Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Much effort in the field of nanopore research has been directed toward reproducing the efficient transport phenomena of biological ion channels. For synthetic nanopores to replicate channel function on the scale of a cellular membrane, it is necessary to consider the modes of crosstalk between channels as well as to develop approaches to prepare nanopore arrays consisting of pores with different transport properties, akin to a membrane in an axon. In this manuscript, first ion concentration polarization (ICP) is identified as the primary means of the crosstalk, and subsequently, the extent and degree of ICP is tuned via targeted chemical modification of the pore walls’ functional groups. Next, two fabrication methods of a model two‐nanopore array are presented in a silicon nitride membrane in which one nanopore contains a bipolar ionic junction and functions as an ionic diode, while the other one is a homogeneously charged ionic resistor. The targeted chemical modification of a thin gold layer at the opening of one pore in an array that leaves the other pore located a few tens of nm away, unmodified, is utilized. These results provide an important framework for designing abiotic ionic circuits that can mimic physiological multichannel ion transport and communication.more » « less
-
Abstract The arrangement of solvent molecules and ions at solid–liquid interfaces determines electrochemical properties that are important in separations platforms, sensing technologies, and energy‐storage systems. Here we show that single glass and polymer pores in contact with propylene carbonate (PC) solutions of LiClO4exhibit an effective surface potential that is modulated by the enantiomeric excess of the solvent. In particular, electrochemical and electrokinetic measurements of ionic transport through glass pipettes and polymer pores reveal that the effective surface potential is significantly lower in solutions prepared using enantiomerically pure PC than in solutions prepared using racemic PC. Both pore systems became positively charged in all racemic solutions examined in the range of LiClO4concentrations between 1 mM and 100 mM, whereas solutions in (R)‐(+)‐PC induced a positive surface potential only at concentrations above ~5 mM. The effective surface potential is quantified through asymmetry in current–voltage curves and zeta‐potential measurements. Vibrational sum‐frequency‐generation experiments on LiClO4solutions in racemic and enantiomerically pure PC indicate that the surface lipid‐bilayer‐like region in the former is more strongly organized than in the latter, dictating the favorable positions for lithium and perchlorate ions in each case. The more ordered molecular packing in the racemic liquid leads to accumulation of lithium ions on the outside of the bilayer, creating a higher effective positive charge. Our results highlight the extreme sensitivity of the interfacial potential on molecular organization of the solvent, and the relatively unexplored role that chirality can play in electrokinetic phenomena.more » « less
-
Abstract Biological processes require concerted function of many channels embedded in the cell membrane. While single solid‐state nanopores are already designed to mimic properties of individual biological channels, it is not yet known how to connect the pores to achieve biomimetic ionic circuits with interacting components. To identify fundamental processes that control interactions between nanopores embedded in the same membrane, a model system of minimal arrays consisting of two and three nanopores in silicon nitride films is designed. The constituent nanopores have an opening diameter <10 nm, and the interpore spacing is tuned between 15 and 200 nm. The experimental and modeling results reveal that nanopores in an array interact with each other via overlapping depletion zones created by the process of concentration polarization. The interactions can be further controlled by salt concentration and voltage. These results showcase a possibility of tuning interactions between nanopores and transport properties of arrays by chemical modification of the pore walls. Arrays consisting of nanoporous ionic diodes feature depletion zones with higher concentrations, and lower current suppression than homogeneously charged pores. These experiments and modeling provide the first steps to leave the constraints of single nanopores and to design biomimetic ionic circuits.more » « less
An official website of the United States government
